Plasticity of the MFS1 Promoter Leads to Multidrug Resistance in the Wheat Pathogen Zymoseptoria tritici
نویسندگان
چکیده
The ascomycete Zymoseptoria tritici is the causal agent of Septoria leaf blotch on wheat. Disease control relies mainly on resistant wheat cultivars and on fungicide applications. The fungus displays a high potential to circumvent both methods. Resistance against all unisite fungicides has been observed over decades. A different type of resistance has emerged among wild populations with multidrug-resistant (MDR) strains. Active fungicide efflux through overexpression of the major facilitator gene MFS1 explains this emerging resistance mechanism. Applying a bulk-progeny sequencing approach, we identified in this study a 519-bp long terminal repeat (LTR) insert in the MFS1 promoter, a relic of a retrotransposon cosegregating with the MDR phenotype. Through gene replacement, we show the insert as a mutation responsible for MFS1 overexpression and the MDR phenotype. Besides this type I insert, we found two different types of promoter inserts in more recent MDR strains. Type I and type II inserts harbor potential transcription factor binding sites, but not the type III insert. Interestingly, all three inserts correspond to repeated elements present at different genomic locations in either IPO323 or other Z. tritici strains. These results underline the plasticity of repeated elements leading to fungicide resistance in Z. tritici and which contribute to its adaptive potential. IMPORTANCE Disease control through fungicides remains an important means to protect crops from fungal diseases and to secure the harvest. Plant-pathogenic fungi, especially Zymoseptoria tritici, have developed resistance against most currently used active ingredients, reducing or abolishing their efficacy. While target site modification is the most common resistance mechanism against single modes of action, active efflux of multiple drugs is an emerging phenomenon in fungal populations reducing additionally fungicides' efficacy in multidrug-resistant strains. We have investigated the mutations responsible for increased drug efflux in Z. tritici field strains. Our study reveals that three different insertions of repeated elements in the same promoter lead to multidrug resistance in Z. tritici. The target gene encodes the membrane transporter MFS1 responsible for drug efflux, with the promoter inserts inducing its overexpression. These results underline the plasticity of repeated elements leading to fungicide resistance in Z. tritici.
منابع مشابه
Evaluation of Resistance to Zymoseptoria tritici Blotch andFusarium Head Blight in Some Genotypes of Bread Wheat
Using resistant cultivars is an effective method in management Zymoseptoria tritici Blotch and Fusarium Head Blight of wheat. This study was conducted to identify new sources of resistance to these diseases among a large number of Iranian cultivars and new wheat genotypes. The genotypes were cultivated in an augment design in the research farm of Aliabad Katoul Agricultural School. Artificial c...
متن کاملEarly molecular signatures of responses of wheat to Zymoseptoria tritici in compatible and incompatible interactions
Zymoseptoria tritici, the causal agent of septoria tritici blotch, a serious foliar disease of wheat, is a necrotrophic pathogen that undergoes a long latent period. Emergence of insensitivity to fungicides, and pesticide reduction policies, mean there is a pressing need to understand septoria and control it through greater varietal resistance. Stb6 and Stb15, the most common qualitative resist...
متن کاملDissecting the Molecular Interactions between Wheat and the Fungal Pathogen Zymoseptoria tritici
The Dothideomycete fungus Zymoseptoria tritici (previously known as Mycosphaerella graminicola and Septoria tritici) is the causative agent of Septoria tritici leaf blotch (STB) disease of wheat (Triticum aestivum L.). In Europe, STB is the most economically damaging disease of wheat, with an estimated ∼€1 billion per year in fungicide expenditure directed toward its control. Here, an overview ...
متن کاملReduction of Growth and Reproduction of the Biotrophic Fungus Blumeria graminis in the Presence of a Necrotrophic Pathogen
Crops are attacked by many potential pathogens with differing life-history traits, which raises the question of whether or not the outcome of infection by one pathogen may be modulated by a change in the host environment brought on by infection by another pathogen. We investigated the host-mediated interaction between the biotroph Blumeria graminis f.sp. tritici (Bgt), the powdery mildew pathog...
متن کاملApoplastic recognition of multiple candidate effectors from the wheat pathogen Zymoseptoria tritici in the nonhost plant Nicotiana benthamiana
The fungus Zymoseptoria tritici is a strictly apoplastic, host-specific pathogen of wheat leaves and causal agent of septoria tritici blotch (STB) disease. All other plants are considered nonhosts, but the mechanism of nonhost resistance (NHR) to Z. tritici has not been addressed previously. We sought to develop Nicotiana benthamiana as a system to study NHR against Z. tritici. Fluorescence mic...
متن کامل